5 research outputs found

    A Co-evolutionary Algorithm-based Enhanced Grey Wolf Optimizer for the Routing of Wireless Sensor Networks

    Get PDF
    Wireless networks are frequently installed in arduous environments, heightening the importance of their consistent operation. To achieve this, effective strategies must be implemented to extend the lifespan of nodes. Energy-conserving routing protocols have emerged as the most prevalent methodology, as they strive to elongate the network\u27s lifetime while guaranteeing reliable data routing with minimal latency. In this paper, a plethora of studies have been done with the purpose of improving network routing, such as the integration of clustering techniques, heterogeneity, and swarm intelligence-inspired approaches. A comparative investigation was conducted on a variety of swarm-based protocols, including a new coevolutionary binary grey wolf optimizer (Co-BGWO), a BGWO, a binary whale optimization, and a binary Salp swarm algorithm. The objective was to optimize cluster heads (CHs) positions and their number during the initial stage of both two-level and three-level heterogeneous networks. The study concluded that these newly developed protocols are more reliable, stable, and energy-efficient than the standard SEP and EDEEC heterogeneous protocols. Specifically, in 150 m2 area of interest, the Co-BGWO and BGWO protocols of two levels were found the most efficient, with over than 33% increase in remaining energy percentage compared to SEP, and over 24% more than EDEEC in three-level networks

    Extending the Lifetime of Wireless Sensor Networks Based on an Improved Multi-objective Artificial Bees Colony Algorithm

    Get PDF
    Reducing the sensors\u27 energy expenditure to prolong the network lifespan as long as possible remains a fundamental problem in the field of wireless networks. Particularly in applications with inaccessible environments, which impose crucial constraints on sensor replacement. It is, therefore, necessary to design adaptive routing protocols, taking into account the environmental constraints and the limited energy of sensors. To have an energy-efficient routing protocol, a new cluster headsā€™ (CHs) selection strategy using a modified multi-objective artificial bees colony (MOABC) optimization is defined. The modified MOABC is based on the roulette wheel selection over non-dominated solutions of the repository (hyper-cubes) in which a rank is assigned to each hypercube based on its density in dominated solutions of the current iteration and then a random food source is elected by roulette from the densest hypercube. The proposed work aims to find the optimal set of CHs based on their residual energies to ensure an optimal balance between the nodes\u27 energy consumption. The achieved results proved that the proposed MOABC-based protocol considerably outperforms recent studies and well-known energy-efficient protocols, namely: LEACH, C-LEACH, SEP, TSEP, DEEC, DDEEC, and EDEEC in terms of energy efficiency, stability, and network lifespan extension

    Enhancing Heterogeneous Wireless Sensor Networks Using Swarm Intelligenceā€“Based Routing Protocols

    No full text
    The design of efficient communication protocols for wireless sensor networks has aroused great interest in the research community, especially in the face of the limited energy of sensor nodes and the frequent change in network topology. Routing remains a challenging problem in wireless communications, as deploying or replacing sensor nodes in hazardous environments is difficult. Many studies have been devoted to alleviate certain limitations, such as clustering to maintain network connectivity, injecting heterogeneity to avoid the rapid death of nodes, or incorporating evolution-based optimization methods to find the best network configuration. This work combined heterogeneity and swarm-based optimization to efficiently balance energy consumption between nodes to increase network reliability. Specifically, this work employed the binary particle swarm optimizer and the binary artificial bees colony optimizer to find approximately the optimal set of cluster heads (CHs) with their optimal number. Based on the probabilistic principle of the heterogeneous protocols: SEP, EDEEC, and BEENISH, a new refined formulation of CHs selection using swarm optimization is proposed. The swarm flight is guided towards the best CHs with an objective function representing a good balance between the initial and residual energy of nodes. Compared to the standard heterogeneous protocols SEP, EDEEC, and BEENISH, the developed protocols significantly perform better in terms of stability (FND), the round of half nodes\u27 death (HND), the network lifetime (LND), and energy saving. Indeed, the BABC-SEP was found 31,66% better than SEP in terms of remaining energy percentage, and CHs selection in EDEEC and BEENISH using BABC improved them by more than 20% in the percentage of remaining energy
    corecore